

QR 0022 Created: 08/07/2013

Fiche technique

MT60 (Chemin de câbles en treillis)

Exécution:	Galvanisatio	n électrolytiq	lue					
Produit	Numéro	Hauteur	Largeur	Longueur	Dim A	Fmax	Unité	Emballage
		(mm)	(mm)	(mm)	(mm)	(kN)		(unité)
MT60-050-3EG	12264	60	50	3000	50		M	3
MT60-100-3EG	10353	60	100	3000	100		М	3
MT60-150-3EG	10358	60	150	3000	150		М	3
MT60-200-3EG	10359	60	200	3000	200		М	3
MT60-300-3EG	10360	60	300	3000	300		М	3
MT60-400-3EG	10361	60	400	3000	400		М	3
MT60-500-3EG	10347	60	500	3000	500		М	3
MT60-600-3EG	10348	60	600	3000	600		М	3

Exécution:	Galvanisé a d	chaud						
Produit	Numéro	Hauteur	Largeur	Longueur	Dim A	Fmax	Unité	Emballage
		(mm)	(mm)	(mm)	(mm)	(kN)		(unité)
MT60-050-3DG	12265	60	50	3000	50		М	3
MT60-100-3DG	10577	60	100	3000	100		М	3
MT60-150-3DG	10582	60	150	3000	150		М	3
MT60-200-3DG	10583	60	200	3000	200		М	3
MT60-300-3DG	10584	60	300	3000	300		М	3
MT60-400-3DG	10585	60	400	3000	400		М	3
MT60-500-3DG	10572	60	500	3000	500		М	3
MT60-600-3DG	10573	60	600	3000	600		М	3

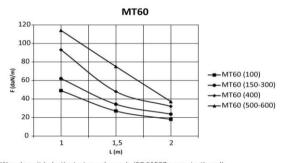
Exécution:	Poudrage							
Produit	Numéro	Hauteur	Largeur	Longueur	Dim A	Fmax	Unité	Emballage
		(mm)	(mm)	(mm)	(mm)	(kN)		(unité)
MT60-050-3CO	12380	60	50	3000	50		М	3
MT60-100-3CO	10879	60	100	3000	100		М	3
MT60-150-3CO	10884	60	150	3000	150		М	3
MT60-200-3CO	10885	60	200	3000	200		М	3
MT60-300-3CO	10886	60	300	3000	300		М	3
MT60-400-3CO	10887	60	400	3000	400		М	3
MT60-500-3CO	10874	60	500	3000	500		М	3
MT60-600-3CO	10875	60	600	3000	600		М	3


Instruction de montage:

P. 1 / 4 Rev01: 05/10/2017

Quality Registration Technical specification

QR 0022 Created: 08/07/2013



Charge pratique:

Standard: IEC61537

Charge max:

Diagramme de charge:

Waarden uit belastingtesten volgens de IEC 61537 norm, testtype II. Geen koppeling in 1ste en laatste overspanning, end-span = 0.8xL, MT60-JCL-PG

F = de maximaal toegestane belasting per meter in daN/m L = de ondersteuningsafstand in m

Valeurs obtenues selon la norme IEC 61537, essai de type II. Pas de jonction dans les travées d'extrémité, travée d'extrémité = 0.8xL, MT60-JCL-PG

F = charge maximale par mètre en daN/m L = la distance entre les supports en m

Information supplémentaire:

Couplage avec: MT60-JCL

Liaison équipotentielle: IEC61537

Déclaration de conformité EC: EC directive 2014/35/EU (Low voltage) as modified by directive 93/68/EEC (CE marking)

P. 2 / 4 Rev01: 05/10/2017

Quality Registration Technical specification

QR 0022 Created: 08/07/2013

Galvanisé électrolytique (EN ISO 2081) EG (electro galvanised)

Les produits galvanisés électrolytiques sont généralement employés dans des endroits où une pollution chimique limitée est possible, comme par exemple des bureaux, des bâtiments industriels, des parkings couverts et analogues.

La galvanisation électrolytique se différencie de la galvanisation à chaud en ce que la couche de zinc est formée ici par électrolyse. Il n'y a dès lors pas d'effet thermique sur l'acier, capable de former des couches d'alliage. De même, les épaisseurs de couche de 6-8 µm (microns) sont plus faibles qu'avec la galvanisation à chaud. Avant la galvanisation elle-même, l'acier traverse une série d'étapes de prétraitement permettant de garantir une adhérence optimale (étapes de dégraissage, décapage, bain acide, rinçages, ...).

Après la galvanisation proprement dite, la couche de zinc subira une passivation et recevra une couche de bichromate, puis un rinçage à l'eau déminéralisée. Les avantages de la galvanisation électrolytique comprennent notamment l'absence de déformations ther-miques, idéale pour les pièces d'assemblages, une finition uniforme et lisse avec un fort brillant, une bonne conductibilité électrique, l'absence de coulures et de piqûres

DG

Galvanisé à chaud (EN ISO 1461) DG (dipped-galvanised)

Des systèmes de chemins de câbles susceptibles d'être exposés à des conditions atmosphériques et/ou à des substances agres-sives (par exemple dans des applications pétrochimiques) subissent un traitement supplémentaire sous la forme d'une galvani-sation à chaud. La galvanisation à chaud est également désignée par zingage à la pièce, zingage en bain fondu, galvanisation au trempé ou galvanisation par immersion à chaud. La galvanisation à chaud est un processus métallurgique dont le but est de protéger l'acier contre la corrosion. Si cette couche est rompue, le zinc fait alors office d'anode sacrificielle, de telle manière que le fer soit protégé par le zinc (effet connu également sous le nom de protection cathodique). Lors de la galvanisation, il se forme trois alliages: un premier: fer-zinc, un deuxième: zinc-fer et un troisième: zinc. Pour obtenir une bonne adhérence, le prétraitement de l'acier est extrêmement important, avec les étapes de dégraissage, rinçage, décapage, rinçage, fluxage, séchage et immersion. L'épaisseur de la couche dépend de la composition de l'acier, de l'épaisseur du matériau et de la durée d'immersion dans le bain de zinc. Dans la norme relative à la galvanisation NEN-EN-ISO 1461, on précise les épais-seurs de couche minimales (comme mentionné ci-dessous), ainsi que la perte de zinc par année, qui dépend des facteurs environnementaux.

La couche de zinc forme en outre une excellente couche d'accrochage pour d'autres revêtements tels que le revêtement par poudrage et des couches de peinture (mieux connu sous le nom de système duplex). Un avantage supplémentaire de la galvanisation à chaud est le fait que, le long des bords et aux points où des objets sont en général très sensibles à la corrosion, la couche de zinc est plus épaisse en raison du comportement du liquide.

Epaisseurs de couche de zinc minimales selon ISO 1461:

- Avec le procédé à la centrifugation

Epaisseur du matériau ≥ 6 mm épaisseur min. de la couche de zinc (moyenne) 85μm
Epaisseur du matériau 3 mm - 6 mm épaisseur min. de la couche de zinc (moyenne) 70μm
Epaisseur du matériau 1,5 mm - 3 mm épaisseur min. de la couche de zinc (moyenne) 55μm
Epaisseur du matériau < 1,5 mm épaisseur min. de la couche de zinc (moyenne) 45μm

- Avec le procédé au tambour (petites pièces)

Epaisseur du matériau \geq 3 mm épaisseur min. de la couche de zinc (moyenne) 55 μ m Epaisseur du matériau < 3 mm épaisseur min. de la couche de zinc (moyenne) 45 μ m

co

Revêtement de poudre de polyester CO (coated)

Le revêtement de polyester sera utilisé dans des environnements moyens où l'aspect esthétique doit s'allier à la durabilité.

La caractéristique du revêtement de polyester est sa résistance à la décoloration par la lumière solaire.

Si son utilisation est requise dans des environnements plus agressifs, il est recommandé de travailler avec un revêtement d'époxy, qui est moins poreux et qui résiste donc mieux aux produits chimiques. L'inconvénient de la résine époxy est qu'elle change rapidement de coloration. Si l'on veut bénéficier des deux avantages, on peut utiliser une couche de fond en époxy et une couche de finition en polyester. Comme pour toutes les techniques de surface précitées, une bonne préparation est ici également cruciale. Selon le matériau de base, il faudra dégraisser, rincer, décaper, rincer, appliquer une couche de conversion (p. ex. du chrome), rincer, rincer à l'eau déminéralisée, sécher.

Application selon la résistance contre la corrosion:

P. 3 / 4 Rev01: 05/10/2017

Quality Registration Technical specification

QR 0022 Created: 08/07/2013

Classes de corrosion selon EN ISO 12994

Classe de	Corrosion			
corrosion	Atmosphérique	Environnement intérieur	Air libre	Traitement de surface
C1	<0,1μm	Locaux chauffés avec atmosphère sèche: bureaux, écoles, magasins et hôtels.		Galvanisation électrolytique selon EN ISO 2081
C2	0,1 -0,7μm	Bâtiments non chauffés avec température et humidité de l'air variables: halls de sports, entrepôts, magasins.	Environnement rural où une faible pollution est possible.	Galvanisation Sendzimir selon EN 10327 – EN 10143
СЗ	0,7 - 2μm	Locaux avec faible pollution de l'air et humidité de l'air modérée à cause de processus industriels: halles de production.	Environnements avec industrie légère et pollution de l'air modérée. Zones avec légères influences maritimes et zones résidentielles.	Galvanisation à chaud (Hot-dip) selon EN ISO 1461
C4	2 - 4µm	Locaux avec forte pollution de l'air et humidité de l'air élevée à cause de processus industriels: industrie chimique, piscines, chantiers navals.	Zones industrielles et environnement maritime avec teneur en sel modérée.	Galvanisation à chaud (Hot-dip) selon EN ISO 1461 Poudrage selon EN ISO 12944
C5-I	4 - 8μm	Bâtiments avec condensation permanente et forte pollution de l'air.	Zones industrielles avec atmosphère agressive et humidité de l'air élevée.	Duplex (Galvanisation à chaud + poudrage) Acier inoxydable AISI 316L
С5-М	4 - 8μm	Environnement maritime et offshore avec taux d'humidité élevé et haute teneur en sel.	Zones industrielles avec atmosphère agressive et humidité de l'air élevée.	Duplex (Galvanisation à chaud + poudrage)

Classification pour la résistance contre la corrosion selon IEC61537

Classe	Référence – Matériau et finition
0(a)	Aucun
1	Revêtement électrolytique d'épaisseur minimale 5 μm
2	Revêtement électrolytique d'épaisseur minimale 12 µm
3	Prégalvanisé avec grade 275 de la EN 10327 et de la EN 10326
4	Prégalvanisé avec grade 350 de la EN 10327 et de la EN 10326
5	Postgalvanisé avec un revêtement de zinc d'épaisseur moyenne (minimale) 45 μm selon l'ISO 1461 pour l'épaisseur de zinc uniquement
6	Postgalvanisé avec un revêtement de zinc d'épaisseur moyenne (minimale) 55 µm selon l'ISO 1461 pour l'épaisseur de zinc uniquement
7	Postgalvanisé avec un revêtement de zinc d'épaisseur moyenne (minimale) 70 μm selon l'ISO 1461 pour l'épaisseur de zinc uniquement
8	Postgalvanisé avec un revêtement de zinc d'épaisseur moyenne (minimale) 85 µm selon l'ISO 1461 pour l'épaisseur de zinc uniquement (communément acier à forte teneur en silicone)
9A	Acier inoxydable fabriqué pour ASTM: A 240/A 240M – 95a désignation S30400 ou grade 1-4301 de la EN 10088 sans traitement postérieur (b)
9B	Acier inoxydable fabriqué pour ASTM: A 240/A 240M – 95a désignation S31603 ou grade 1-4404 de la EN 10088 sans traitement postérieur (b)
9C	Acier inoxydable fabriqué pour ASTM: A 240/A 240M – 95a désignation S30400 ou grade 1-4301 de la EN 10088 avec traitement postérieur (b)
9D	Acier inoxydable fabriqué pour ASTM: A 240/A 240M – 95a désignation S31603 ou grade 1-4404 de la EN 10088 avec traitement postérieur (b)

(a) Pour les matériaux ne possédant pas de classification déclarée pour la résistance contre la corrosion.
(b) Le procédé de traitement postérieur est employé pour améliorer la protection contre la corrosion due à la présence de craquelures et contre la contamination par d'autres aciers.

P. 4 / 4 Rev01: 05/10/2017