

Quality Registration Technical specification

QR 0022 Created: 08/07/2013

Produktinformation SS-SP41-41-25 (Tragprofil)

Ausführung:	Edelstahl 316	(V4A)						
Produkt	Nummer	Höge	Breite	Länge	Maß A	Fmax	Einheit	Verpackung
		(mm)	(mm)	(mm)	(mm)	(kN)		(Einheit)
SP41-41-25-6SS316	13310	0	0	6000	6000		M	6

Anwendungsbeispiel:

-

Belastbarkeit:

Standard: -

Max. Belastung: -

Belastungsdiagramm: -

Zusätzliche Informationen:

Verbinder: -

Potentialausgleich IEC61537

Konformitätserklärung CE: EC directive 2006/95/EC (Low voltage) as modified by directive 93/68/EEC (CE marking)

SS316

P. 1 / 2 Rev01: 05/10/2017

Quality Registration Technical specification

QR 0022 Created: 08/07/2013

Edelstahl (1.4404) AISI 316L

Das Material "nichtrostender Stahl" ist unter der Bezeichnung "rostfreier" Stahl oder Edelstahl besser bekannt. Dadurch, dass dem Eisen Chrom (ca. 13 %) zugefügt wird, entsteht ein bestimmter Glanz und wird das Metall gegen Korrosionbeständiger.

Der Vorteil gegenüber anderen Schutzschichten ist, dass der Stahl ohne irgendeinen Oberflächenschutz "frei" von Korrosion ist oder genauer gesagt, dass das Chrom eine feine unsichtbare Schicht aus Chromoxid, die sogenannte Oxidhaut bildet, wenn es mit Sauerstoff in Berührung kommt. Diese feine Schicht schützt das darunterliegende Inox gegen weitere Rostbildung (Oxidation). Wenn die Oxidschicht beschädigt wird, kommt das darunterliegende Inox erneut mit Sauerstoff in Kontakt, woraufin es wieder eine Schutzschicht bildet. Auf diese Weise regeneriert es sich selbst, wenn es beschädigt wird.

Unter bestimmten Umständen oder bei Beschädigung der schützenden Oxidhaut kann die Rostbildung an lokalen Stellen sehr schnell erfolgen. Dies wird u. a. durch Chloride oder andere Materialien (häufg Eisen) verursacht, die sich in der Oberfläche einnisten. Durch diese Verunreinigung kann eine Lochfraßkorrosion entstehen, die das Edelstahl angreift. Deshalb wird der nichtrostende Stahl nach der Verarbeitung einer Behandlung unterzogen, bei der alle möglichen Verunreinigungen entfernt werden. Diese Behandlung ist das sogenannte Beizen.

Wie zuvor erwähnt wurde, schützt eine passive Chromschicht den Stahl und diese repariert sich automatisch. Es gibt jedoch Umstände, bei denen diese Reparatur nicht erfolgt. Infolge diverser Bearbeitungen kann nämlich das Gleichgewicht so gestört werden, dass der passive Zustand verschwindet und eine aktive Schicht entsteht. Dies kann bei Bearbeitungen wie z. B.

Schweißen, Biegen oder Spanen auftreten, wodurch sauerstoffarme Stellen entstehen und die Reparatur unterbleibt. Dadurch gehen die rostbeständigen Eigenschaften verloren und kann es bei einer Gas- oder Flüssigkeitsexposition zu einer Korrosion kommen.

Um dieses Problem zu beseitigen, wird die aktive Schicht durch Passivierung wieder in eine passive Schicht umgewandelt. Dazu ist es meistens erwünscht, die bearbeiteten Produkte zu entfetten und danach mit einem Gemisch aus Salpetersäure (HNO3) und Fluorwasserstoffsäure (HF) zu beizen, um Verunreinigungen der Metalloberfläche zu entfernen. Dies kann sich bei geschweißten Oberflächen und bei gedrehten Gegenständen, bei denen eine Kühlflüssigkeit verwendet wurde, als notwendig erweisen.

Application selon la résistance contre la corrosion:

Korrosions kategorie	Atmosphärische Korrosion	Umgebung Innen	Umgebung Aussen	Oberflächenbehandlung	
C1	<0,1µm	Geheizte Gebäude mit neutralen Atmosphären: Buros, Läden, Schulen, hotels.		Elektrolytische Verzinkung (EG) EN ISO 2081	
C2	0,1 - 0,7μm	Ungeheizte Gebäude mit Kondensatbildung: Lager, Sporthallen.	Ländlicher Raum, Atmosphäre mit geringer Verunreinigungen.	Sendzimir Verzinkung (PG) EN 10327 – EN 10143	
C3	0,7 - 2μm	Produktionsräume mit hoher Luftfeuchtigkeit und leichter Luftverunreinigung infolge von industriellen Prozessen: Produktionshallen.	Stadt-und Industrieatmosphäre, mässige Verunreinigungen. Küstenbereiche mit geringer Salsbelastung.	Tauchfeuerverzinkung (DG) EN ISO 1461	
C4	2 - 4µm	Produktionsräume mit hoher Luftfeuchtigkeit und hoher Luftverunreinigung infolge von industriellen Prozessen: Chemieanlagen, Schwimbäder.	Industrielle Bereiche und Küstenbereiche mit geringer Salzbelastung.	Tauchfeuerverzinkung (DG) EN ISO 1461 Pulverbeschichtung (DG) EN ISO 12944	
C5-I	4 - 8µm	Gebäude oder Bereiche mit nahezu ständiger Kondensation und mit starker Verunreinigung.	Industrielle Bereiche mit hoher Feuchte und aggressiver Atmosphäre.	Duplex (DU) (Tauchfeuerverzinkung + Pulverbeschichtung) Acier inoxydable Edelstahl AISI 316L	
C5-M	Produktionsräume mit hoher 4 - 8µm Luftfeuchtigkeit und aggressiver Atmosphäre.		Küsten- oder Offshorebereiche mit Salzbelastung und hoher luftfeuchtigkeit.	Duplex (DU) (Tauchfeuerverzinkung + Pulverbeschichtung) Acier inoxydable Edelstahl AISI 316L	

P. 2 / 2 Rev01: 05/10/2017