Request the new Trayco catalogue in 1 click!

Z-Profile

ZCL40

To be used with CTLI60 - MTL60
Coated finishing available on demand. RAL colour code to be confirmed on your order.

SKU Article code Finishing Dimension A Packaging
14222
ZCL40-100-PG
PG
150
10
Default
EAN
5415129041189

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Additional information

Product features
To be used with CTLI60 - MTL60
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Sendzimir galvanized (EN 10143) PG (pre-galvanized):

Products made of Sendzimir (pre-galvanized) or continuous hot-dip galvanized steel sheet and coils are mostly used wherever limited chemical contamination is likely, for example, in of ces, industrial buildings, covered parking lots, etc.
Characteristic of this steel type is that – prior to mechanical deformation – it is given a zinc coating by means of a continuous dipping process. This zinc coating is easily deformed. A cathodic action occurs on cut surfaces (up to 1.5mm) that protects against oxidation.
First, the steel is chemical cleaned and roughened in order to achieve a good bond. After the dipping process, the surplus zinc is blown off and one obtains an extra passivating coat (an ultra-thin protective coat) to prevent oxidation of the zinc coating (white rust). The coating thickness is usually expressed in g/m2. The most deployed type of Sendzimir steel is Z 275 = 275g/m2 (weighed on both sides), this corresponds to 18-20 µm (micron).
Sendzimir galvanized steel sourced from modern galvanizing lines has, in general, a uniform, shiny appearance. The previous, common fl owery surface is scarcely seen these days. This effect is obtained under the infl uence of lead but has no eff ect on the quality of the coating. The use of lead was banned due to the ever more stringent environmental standards.
14223
ZCL40-150-PG
PG
200
10
Default
EAN
5415129041196

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Additional information

Product features
To be used with CTLI60 - MTL60
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Sendzimir galvanized (EN 10143) PG (pre-galvanized):

Products made of Sendzimir (pre-galvanized) or continuous hot-dip galvanized steel sheet and coils are mostly used wherever limited chemical contamination is likely, for example, in of ces, industrial buildings, covered parking lots, etc.
Characteristic of this steel type is that – prior to mechanical deformation – it is given a zinc coating by means of a continuous dipping process. This zinc coating is easily deformed. A cathodic action occurs on cut surfaces (up to 1.5mm) that protects against oxidation.
First, the steel is chemical cleaned and roughened in order to achieve a good bond. After the dipping process, the surplus zinc is blown off and one obtains an extra passivating coat (an ultra-thin protective coat) to prevent oxidation of the zinc coating (white rust). The coating thickness is usually expressed in g/m2. The most deployed type of Sendzimir steel is Z 275 = 275g/m2 (weighed on both sides), this corresponds to 18-20 µm (micron).
Sendzimir galvanized steel sourced from modern galvanizing lines has, in general, a uniform, shiny appearance. The previous, common fl owery surface is scarcely seen these days. This effect is obtained under the infl uence of lead but has no eff ect on the quality of the coating. The use of lead was banned due to the ever more stringent environmental standards.
14224
ZCL40-200-PG
PG
250
10
Default
EAN
5415129041202

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Additional information

Product features
To be used with CTLI60 - MTL60
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Sendzimir galvanized (EN 10143) PG (pre-galvanized):

Products made of Sendzimir (pre-galvanized) or continuous hot-dip galvanized steel sheet and coils are mostly used wherever limited chemical contamination is likely, for example, in of ces, industrial buildings, covered parking lots, etc.
Characteristic of this steel type is that – prior to mechanical deformation – it is given a zinc coating by means of a continuous dipping process. This zinc coating is easily deformed. A cathodic action occurs on cut surfaces (up to 1.5mm) that protects against oxidation.
First, the steel is chemical cleaned and roughened in order to achieve a good bond. After the dipping process, the surplus zinc is blown off and one obtains an extra passivating coat (an ultra-thin protective coat) to prevent oxidation of the zinc coating (white rust). The coating thickness is usually expressed in g/m2. The most deployed type of Sendzimir steel is Z 275 = 275g/m2 (weighed on both sides), this corresponds to 18-20 µm (micron).
Sendzimir galvanized steel sourced from modern galvanizing lines has, in general, a uniform, shiny appearance. The previous, common fl owery surface is scarcely seen these days. This effect is obtained under the infl uence of lead but has no eff ect on the quality of the coating. The use of lead was banned due to the ever more stringent environmental standards.
14225
ZCL40-300-PG
PG
350
10
Default
EAN
5415129041219

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Additional information

Product features
To be used with CTLI60 - MTL60
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Sendzimir galvanized (EN 10143) PG (pre-galvanized):

Products made of Sendzimir (pre-galvanized) or continuous hot-dip galvanized steel sheet and coils are mostly used wherever limited chemical contamination is likely, for example, in of ces, industrial buildings, covered parking lots, etc.
Characteristic of this steel type is that – prior to mechanical deformation – it is given a zinc coating by means of a continuous dipping process. This zinc coating is easily deformed. A cathodic action occurs on cut surfaces (up to 1.5mm) that protects against oxidation.
First, the steel is chemical cleaned and roughened in order to achieve a good bond. After the dipping process, the surplus zinc is blown off and one obtains an extra passivating coat (an ultra-thin protective coat) to prevent oxidation of the zinc coating (white rust). The coating thickness is usually expressed in g/m2. The most deployed type of Sendzimir steel is Z 275 = 275g/m2 (weighed on both sides), this corresponds to 18-20 µm (micron).
Sendzimir galvanized steel sourced from modern galvanizing lines has, in general, a uniform, shiny appearance. The previous, common fl owery surface is scarcely seen these days. This effect is obtained under the infl uence of lead but has no eff ect on the quality of the coating. The use of lead was banned due to the ever more stringent environmental standards.
16783
ZCL40-400-PG
PG
450
10
Default
EAN
5415129065901

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Additional information

Product features
To be used with CTLI60 - MTL60
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Sendzimir galvanized (EN 10143) PG (pre-galvanized):

Products made of Sendzimir (pre-galvanized) or continuous hot-dip galvanized steel sheet and coils are mostly used wherever limited chemical contamination is likely, for example, in of ces, industrial buildings, covered parking lots, etc.
Characteristic of this steel type is that – prior to mechanical deformation – it is given a zinc coating by means of a continuous dipping process. This zinc coating is easily deformed. A cathodic action occurs on cut surfaces (up to 1.5mm) that protects against oxidation.
First, the steel is chemical cleaned and roughened in order to achieve a good bond. After the dipping process, the surplus zinc is blown off and one obtains an extra passivating coat (an ultra-thin protective coat) to prevent oxidation of the zinc coating (white rust). The coating thickness is usually expressed in g/m2. The most deployed type of Sendzimir steel is Z 275 = 275g/m2 (weighed on both sides), this corresponds to 18-20 µm (micron).
Sendzimir galvanized steel sourced from modern galvanizing lines has, in general, a uniform, shiny appearance. The previous, common fl owery surface is scarcely seen these days. This effect is obtained under the infl uence of lead but has no eff ect on the quality of the coating. The use of lead was banned due to the ever more stringent environmental standards.
14230
ZCL40-100-DG
DG
150
10
EAN
5415129041264

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Additional information

Product features
To be used with CTLI60 - MTL60
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
14231
ZCL40-150-DG
DG
200
10
EAN
5415129041271

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Additional information

Product features
To be used with CTLI60 - MTL60
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
14232
ZCL40-200-DG
DG
250
10
EAN
5415129041288

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Additional information

Product features
To be used with CTLI60 - MTL60
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
14233
ZCL40-300-DG
DG
350
10
EAN
5415129041295

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Additional information

Product features
To be used with CTLI60 - MTL60
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
16784
ZCL40-400-DG
DG
450
10
EAN
5415129065918

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Additional information

Product features
To be used with CTLI60 - MTL60
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm

Assembly