Trayco NV will be closed from 23/12/2024 until 3/01/2025. Click here for more info!

Mesh Tray

MT60

Connect with MT60-JCL
Coated finishing available on demand. RAL colour code to be confirmed on your order.

SKU Article code Finishing Dimension A Usable surface (cm²) Packaging
12264
MT60-050-3EG
EG
50
16.54
3
Default
EAN
5415129022539

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with MT60-JCL
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Electrolytically galvanized (EN ISO 2081) EG (electrogalvanized)

Electrolytically galvanized products are mostly used in places where limited chemical contamination is likely, for example, in off ces, industrial buildings, covered parking lots, etc.
Electrogalvanizing diff ers from hot-dip galvanizing in that the zinc coating, in this case, is built up by electrolysis. With this technique, there are no thermal infl uences on the steel, so no layers of alloy will form. Also, the coating thicknesses of 6-8µm (micron) are more limited compared to hot-dip galvanizing.
Prior to the galvanizing, the steel sheet goes through several pre-treatment steps so as to ensure optimal adhesion (degreasing steps, pickling, a brief acid dip, multiple rinsing,….) After the galvanizing proper, the zinc coating receives a passivating- and dichromate coat, followed by a rinsing with demi-water. The advantages of electrogalvanizing are, among other things: no thermal deformation (so ideal for assembly parts), an attractive, uniform and perfectly smooth, high-gloss f nish with good electrical conductivity, no runs in the paintwork or zinc jags.
10353
MT60-100-3EG
EG
100
43.67
3
Default
EAN
5415129003538

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with MT60-JCL
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Electrolytically galvanized (EN ISO 2081) EG (electrogalvanized)

Electrolytically galvanized products are mostly used in places where limited chemical contamination is likely, for example, in off ces, industrial buildings, covered parking lots, etc.
Electrogalvanizing diff ers from hot-dip galvanizing in that the zinc coating, in this case, is built up by electrolysis. With this technique, there are no thermal infl uences on the steel, so no layers of alloy will form. Also, the coating thicknesses of 6-8µm (micron) are more limited compared to hot-dip galvanizing.
Prior to the galvanizing, the steel sheet goes through several pre-treatment steps so as to ensure optimal adhesion (degreasing steps, pickling, a brief acid dip, multiple rinsing,….) After the galvanizing proper, the zinc coating receives a passivating- and dichromate coat, followed by a rinsing with demi-water. The advantages of electrogalvanizing are, among other things: no thermal deformation (so ideal for assembly parts), an attractive, uniform and perfectly smooth, high-gloss f nish with good electrical conductivity, no runs in the paintwork or zinc jags.
10358
MT60-150-3EG
EG
150
70.79
3
Default
EAN
5415129003583

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with MT60-JCL
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Electrolytically galvanized (EN ISO 2081) EG (electrogalvanized)

Electrolytically galvanized products are mostly used in places where limited chemical contamination is likely, for example, in off ces, industrial buildings, covered parking lots, etc.
Electrogalvanizing diff ers from hot-dip galvanizing in that the zinc coating, in this case, is built up by electrolysis. With this technique, there are no thermal infl uences on the steel, so no layers of alloy will form. Also, the coating thicknesses of 6-8µm (micron) are more limited compared to hot-dip galvanizing.
Prior to the galvanizing, the steel sheet goes through several pre-treatment steps so as to ensure optimal adhesion (degreasing steps, pickling, a brief acid dip, multiple rinsing,….) After the galvanizing proper, the zinc coating receives a passivating- and dichromate coat, followed by a rinsing with demi-water. The advantages of electrogalvanizing are, among other things: no thermal deformation (so ideal for assembly parts), an attractive, uniform and perfectly smooth, high-gloss f nish with good electrical conductivity, no runs in the paintwork or zinc jags.
10359
MT60-200-3EG
EG
200
97.92
3
Default
EAN
5415129003590

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with MT60-JCL
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Electrolytically galvanized (EN ISO 2081) EG (electrogalvanized)

Electrolytically galvanized products are mostly used in places where limited chemical contamination is likely, for example, in off ces, industrial buildings, covered parking lots, etc.
Electrogalvanizing diff ers from hot-dip galvanizing in that the zinc coating, in this case, is built up by electrolysis. With this technique, there are no thermal infl uences on the steel, so no layers of alloy will form. Also, the coating thicknesses of 6-8µm (micron) are more limited compared to hot-dip galvanizing.
Prior to the galvanizing, the steel sheet goes through several pre-treatment steps so as to ensure optimal adhesion (degreasing steps, pickling, a brief acid dip, multiple rinsing,….) After the galvanizing proper, the zinc coating receives a passivating- and dichromate coat, followed by a rinsing with demi-water. The advantages of electrogalvanizing are, among other things: no thermal deformation (so ideal for assembly parts), an attractive, uniform and perfectly smooth, high-gloss f nish with good electrical conductivity, no runs in the paintwork or zinc jags.
10360
MT60-300-3EG
EG
300
152.17
3
Default
EAN
5415129003606

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with MT60-JCL
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Electrolytically galvanized (EN ISO 2081) EG (electrogalvanized)

Electrolytically galvanized products are mostly used in places where limited chemical contamination is likely, for example, in off ces, industrial buildings, covered parking lots, etc.
Electrogalvanizing diff ers from hot-dip galvanizing in that the zinc coating, in this case, is built up by electrolysis. With this technique, there are no thermal infl uences on the steel, so no layers of alloy will form. Also, the coating thicknesses of 6-8µm (micron) are more limited compared to hot-dip galvanizing.
Prior to the galvanizing, the steel sheet goes through several pre-treatment steps so as to ensure optimal adhesion (degreasing steps, pickling, a brief acid dip, multiple rinsing,….) After the galvanizing proper, the zinc coating receives a passivating- and dichromate coat, followed by a rinsing with demi-water. The advantages of electrogalvanizing are, among other things: no thermal deformation (so ideal for assembly parts), an attractive, uniform and perfectly smooth, high-gloss f nish with good electrical conductivity, no runs in the paintwork or zinc jags.
10361
MT60-400-3EG
EG
400
206.42
3
Default
EAN
5415129003613

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with MT60-JCL
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Electrolytically galvanized (EN ISO 2081) EG (electrogalvanized)

Electrolytically galvanized products are mostly used in places where limited chemical contamination is likely, for example, in off ces, industrial buildings, covered parking lots, etc.
Electrogalvanizing diff ers from hot-dip galvanizing in that the zinc coating, in this case, is built up by electrolysis. With this technique, there are no thermal infl uences on the steel, so no layers of alloy will form. Also, the coating thicknesses of 6-8µm (micron) are more limited compared to hot-dip galvanizing.
Prior to the galvanizing, the steel sheet goes through several pre-treatment steps so as to ensure optimal adhesion (degreasing steps, pickling, a brief acid dip, multiple rinsing,….) After the galvanizing proper, the zinc coating receives a passivating- and dichromate coat, followed by a rinsing with demi-water. The advantages of electrogalvanizing are, among other things: no thermal deformation (so ideal for assembly parts), an attractive, uniform and perfectly smooth, high-gloss f nish with good electrical conductivity, no runs in the paintwork or zinc jags.
10347
MT60-500-3EG
EG
500
260.67
3
Default
EAN
5415129003477

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with MT60-JCL
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Electrolytically galvanized (EN ISO 2081) EG (electrogalvanized)

Electrolytically galvanized products are mostly used in places where limited chemical contamination is likely, for example, in off ces, industrial buildings, covered parking lots, etc.
Electrogalvanizing diff ers from hot-dip galvanizing in that the zinc coating, in this case, is built up by electrolysis. With this technique, there are no thermal infl uences on the steel, so no layers of alloy will form. Also, the coating thicknesses of 6-8µm (micron) are more limited compared to hot-dip galvanizing.
Prior to the galvanizing, the steel sheet goes through several pre-treatment steps so as to ensure optimal adhesion (degreasing steps, pickling, a brief acid dip, multiple rinsing,….) After the galvanizing proper, the zinc coating receives a passivating- and dichromate coat, followed by a rinsing with demi-water. The advantages of electrogalvanizing are, among other things: no thermal deformation (so ideal for assembly parts), an attractive, uniform and perfectly smooth, high-gloss f nish with good electrical conductivity, no runs in the paintwork or zinc jags.
10348
MT60-600-3EG
EG
600
314.92
3
Default
EAN
5415129003484

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with MT60-JCL
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Electrolytically galvanized (EN ISO 2081) EG (electrogalvanized)

Electrolytically galvanized products are mostly used in places where limited chemical contamination is likely, for example, in off ces, industrial buildings, covered parking lots, etc.
Electrogalvanizing diff ers from hot-dip galvanizing in that the zinc coating, in this case, is built up by electrolysis. With this technique, there are no thermal infl uences on the steel, so no layers of alloy will form. Also, the coating thicknesses of 6-8µm (micron) are more limited compared to hot-dip galvanizing.
Prior to the galvanizing, the steel sheet goes through several pre-treatment steps so as to ensure optimal adhesion (degreasing steps, pickling, a brief acid dip, multiple rinsing,….) After the galvanizing proper, the zinc coating receives a passivating- and dichromate coat, followed by a rinsing with demi-water. The advantages of electrogalvanizing are, among other things: no thermal deformation (so ideal for assembly parts), an attractive, uniform and perfectly smooth, high-gloss f nish with good electrical conductivity, no runs in the paintwork or zinc jags.
12265
MT60-050-3DG
DG
50
16.54
3
EAN
5415129022546

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with MT60-JCL
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
10577
MT60-100-3DG
DG
100
43.67
3
EAN
5415129005778

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with MT60-JCL
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
10582
MT60-150-3DG
DG
150
70.79
3
EAN
5415129005822

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with MT60-JCL
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
10583
MT60-200-3DG
DG
200
97.92
3
EAN
5415129005839

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with MT60-JCL
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
10584
MT60-300-3DG
DG
300
152.17
3
EAN
5415129005846

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with MT60-JCL
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
10585
MT60-400-3DG
DG
400
206.42
3
EAN
5415129005853

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with MT60-JCL
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
10572
MT60-500-3DG
DG
500
260.67
3
EAN
5415129005723

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with MT60-JCL
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
10573
MT60-600-3DG
DG
600
314.92
3
EAN
5415129005730

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with MT60-JCL
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
20340
MT60-500-3UG
UG
500
260.67
3
EAN
5415129101074

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with MT60-JCL
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

ULTRA GALVA (UG)

This a high-performant metallic coating which offers an optimum surface protection in a wide variety of agressive and demanding environments, indoor as well as outdoor. The unique alloy of small amounts of magnesium and/or aluminium in the zinc bath provides ULTRA protection with a self-healing effect. Whilst zinc is essential for cathodic protection, magnesium prevents red rust. The passivation layer that comes on top, creates a seal that slows down the first traces of white rust.
ULTRA GALVA offers a number of advantages compared to the traditional hot dip finishing.
- the passivation layer offers a superior protection level. Hence, ULTRA GALVA, being cathodical, is self-healing in case of scratches, edges or perforations. Compared to hot dip, the articles remain very straight, no deflections appear nor flux or dull spots/ashes
- ULTRA GALVA can conveniently be cold-processed without any risk on flakes because of the perfect adhesion of the coating to the metal
- no zinc pins appear which enables one to install cables in a fast way avoiding any risk on damages to cables nor injuries of workers
- thanks to the longer life span, ULTRA GALVA does not require ongoing maintenance nor post painting actions
- three times less zinc is being applied compared to hot dip finishing
- there is hence a lower impact on natural ressources as well as less pollution
-on top, its production process generates less CO2 emission and ULTRA GALVA is 100% recyclable.
ULTRA GALVA is hence a vary valuable environmentally friendly alternative for the traditional stainless steel and hot-dip finishing!
20341
MT60-600-3UG
UG
600
314.92
3
EAN
5415129101081

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with MT60-JCL
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

ULTRA GALVA (UG)

This a high-performant metallic coating which offers an optimum surface protection in a wide variety of agressive and demanding environments, indoor as well as outdoor. The unique alloy of small amounts of magnesium and/or aluminium in the zinc bath provides ULTRA protection with a self-healing effect. Whilst zinc is essential for cathodic protection, magnesium prevents red rust. The passivation layer that comes on top, creates a seal that slows down the first traces of white rust.
ULTRA GALVA offers a number of advantages compared to the traditional hot dip finishing.
- the passivation layer offers a superior protection level. Hence, ULTRA GALVA, being cathodical, is self-healing in case of scratches, edges or perforations. Compared to hot dip, the articles remain very straight, no deflections appear nor flux or dull spots/ashes
- ULTRA GALVA can conveniently be cold-processed without any risk on flakes because of the perfect adhesion of the coating to the metal
- no zinc pins appear which enables one to install cables in a fast way avoiding any risk on damages to cables nor injuries of workers
- thanks to the longer life span, ULTRA GALVA does not require ongoing maintenance nor post painting actions
- three times less zinc is being applied compared to hot dip finishing
- there is hence a lower impact on natural ressources as well as less pollution
-on top, its production process generates less CO2 emission and ULTRA GALVA is 100% recyclable.
ULTRA GALVA is hence a vary valuable environmentally friendly alternative for the traditional stainless steel and hot-dip finishing!

Assembly

Load diagram