Trayco NV will be closed from 23/12/2024 until 3/01/2025. Click here for more info!

Cable Tray interl. ends light

CTLI35

Connect with BN06-10
Coated finishing available on demand. RAL colour code to be confirmed on your order.

SKU Article code Finishing Dimension A Usable surface (cm²) Packaging
13818
CTLI35-050-3PG
PG
50
13.08
3
Default
EAN
5415129037250

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with BN06-10
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Sendzimir galvanized (EN 10143) PG (pre-galvanized):

Products made of Sendzimir (pre-galvanized) or continuous hot-dip galvanized steel sheet and coils are mostly used wherever limited chemical contamination is likely, for example, in of ces, industrial buildings, covered parking lots, etc.
Characteristic of this steel type is that – prior to mechanical deformation – it is given a zinc coating by means of a continuous dipping process. This zinc coating is easily deformed. A cathodic action occurs on cut surfaces (up to 1.5mm) that protects against oxidation.
First, the steel is chemical cleaned and roughened in order to achieve a good bond. After the dipping process, the surplus zinc is blown off and one obtains an extra passivating coat (an ultra-thin protective coat) to prevent oxidation of the zinc coating (white rust). The coating thickness is usually expressed in g/m2. The most deployed type of Sendzimir steel is Z 275 = 275g/m2 (weighed on both sides), this corresponds to 18-20 µm (micron).
Sendzimir galvanized steel sourced from modern galvanizing lines has, in general, a uniform, shiny appearance. The previous, common fl owery surface is scarcely seen these days. This effect is obtained under the infl uence of lead but has no eff ect on the quality of the coating. The use of lead was banned due to the ever more stringent environmental standards.
13819
CTLI35-075-3PG
PG
75
21.49
3
Default
EAN
5415129037267

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with BN06-10
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Sendzimir galvanized (EN 10143) PG (pre-galvanized):

Products made of Sendzimir (pre-galvanized) or continuous hot-dip galvanized steel sheet and coils are mostly used wherever limited chemical contamination is likely, for example, in of ces, industrial buildings, covered parking lots, etc.
Characteristic of this steel type is that – prior to mechanical deformation – it is given a zinc coating by means of a continuous dipping process. This zinc coating is easily deformed. A cathodic action occurs on cut surfaces (up to 1.5mm) that protects against oxidation.
First, the steel is chemical cleaned and roughened in order to achieve a good bond. After the dipping process, the surplus zinc is blown off and one obtains an extra passivating coat (an ultra-thin protective coat) to prevent oxidation of the zinc coating (white rust). The coating thickness is usually expressed in g/m2. The most deployed type of Sendzimir steel is Z 275 = 275g/m2 (weighed on both sides), this corresponds to 18-20 µm (micron).
Sendzimir galvanized steel sourced from modern galvanizing lines has, in general, a uniform, shiny appearance. The previous, common fl owery surface is scarcely seen these days. This effect is obtained under the infl uence of lead but has no eff ect on the quality of the coating. The use of lead was banned due to the ever more stringent environmental standards.
13820
CTLI35-100-3PG
PG
100
29.9
3
Default
EAN
5415129037274

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with BN06-10
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Sendzimir galvanized (EN 10143) PG (pre-galvanized):

Products made of Sendzimir (pre-galvanized) or continuous hot-dip galvanized steel sheet and coils are mostly used wherever limited chemical contamination is likely, for example, in of ces, industrial buildings, covered parking lots, etc.
Characteristic of this steel type is that – prior to mechanical deformation – it is given a zinc coating by means of a continuous dipping process. This zinc coating is easily deformed. A cathodic action occurs on cut surfaces (up to 1.5mm) that protects against oxidation.
First, the steel is chemical cleaned and roughened in order to achieve a good bond. After the dipping process, the surplus zinc is blown off and one obtains an extra passivating coat (an ultra-thin protective coat) to prevent oxidation of the zinc coating (white rust). The coating thickness is usually expressed in g/m2. The most deployed type of Sendzimir steel is Z 275 = 275g/m2 (weighed on both sides), this corresponds to 18-20 µm (micron).
Sendzimir galvanized steel sourced from modern galvanizing lines has, in general, a uniform, shiny appearance. The previous, common fl owery surface is scarcely seen these days. This effect is obtained under the infl uence of lead but has no eff ect on the quality of the coating. The use of lead was banned due to the ever more stringent environmental standards.
13821
CTLI35-150-3PG
PG
150
46.73
3
Default
EAN
5415129037281

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with BN06-10
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Sendzimir galvanized (EN 10143) PG (pre-galvanized):

Products made of Sendzimir (pre-galvanized) or continuous hot-dip galvanized steel sheet and coils are mostly used wherever limited chemical contamination is likely, for example, in of ces, industrial buildings, covered parking lots, etc.
Characteristic of this steel type is that – prior to mechanical deformation – it is given a zinc coating by means of a continuous dipping process. This zinc coating is easily deformed. A cathodic action occurs on cut surfaces (up to 1.5mm) that protects against oxidation.
First, the steel is chemical cleaned and roughened in order to achieve a good bond. After the dipping process, the surplus zinc is blown off and one obtains an extra passivating coat (an ultra-thin protective coat) to prevent oxidation of the zinc coating (white rust). The coating thickness is usually expressed in g/m2. The most deployed type of Sendzimir steel is Z 275 = 275g/m2 (weighed on both sides), this corresponds to 18-20 µm (micron).
Sendzimir galvanized steel sourced from modern galvanizing lines has, in general, a uniform, shiny appearance. The previous, common fl owery surface is scarcely seen these days. This effect is obtained under the infl uence of lead but has no eff ect on the quality of the coating. The use of lead was banned due to the ever more stringent environmental standards.
13822
CTLI35-200-3PG
PG
200
63.55
3
Default
EAN
5415129037298

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with BN06-10
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Sendzimir galvanized (EN 10143) PG (pre-galvanized):

Products made of Sendzimir (pre-galvanized) or continuous hot-dip galvanized steel sheet and coils are mostly used wherever limited chemical contamination is likely, for example, in of ces, industrial buildings, covered parking lots, etc.
Characteristic of this steel type is that – prior to mechanical deformation – it is given a zinc coating by means of a continuous dipping process. This zinc coating is easily deformed. A cathodic action occurs on cut surfaces (up to 1.5mm) that protects against oxidation.
First, the steel is chemical cleaned and roughened in order to achieve a good bond. After the dipping process, the surplus zinc is blown off and one obtains an extra passivating coat (an ultra-thin protective coat) to prevent oxidation of the zinc coating (white rust). The coating thickness is usually expressed in g/m2. The most deployed type of Sendzimir steel is Z 275 = 275g/m2 (weighed on both sides), this corresponds to 18-20 µm (micron).
Sendzimir galvanized steel sourced from modern galvanizing lines has, in general, a uniform, shiny appearance. The previous, common fl owery surface is scarcely seen these days. This effect is obtained under the infl uence of lead but has no eff ect on the quality of the coating. The use of lead was banned due to the ever more stringent environmental standards.
13823
CTLI35-300-3PG
PG
300
97.2
3
Default
EAN
5415129037304

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with BN06-10
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Sendzimir galvanized (EN 10143) PG (pre-galvanized):

Products made of Sendzimir (pre-galvanized) or continuous hot-dip galvanized steel sheet and coils are mostly used wherever limited chemical contamination is likely, for example, in of ces, industrial buildings, covered parking lots, etc.
Characteristic of this steel type is that – prior to mechanical deformation – it is given a zinc coating by means of a continuous dipping process. This zinc coating is easily deformed. A cathodic action occurs on cut surfaces (up to 1.5mm) that protects against oxidation.
First, the steel is chemical cleaned and roughened in order to achieve a good bond. After the dipping process, the surplus zinc is blown off and one obtains an extra passivating coat (an ultra-thin protective coat) to prevent oxidation of the zinc coating (white rust). The coating thickness is usually expressed in g/m2. The most deployed type of Sendzimir steel is Z 275 = 275g/m2 (weighed on both sides), this corresponds to 18-20 µm (micron).
Sendzimir galvanized steel sourced from modern galvanizing lines has, in general, a uniform, shiny appearance. The previous, common fl owery surface is scarcely seen these days. This effect is obtained under the infl uence of lead but has no eff ect on the quality of the coating. The use of lead was banned due to the ever more stringent environmental standards.
14831
CTLI35-400-3PG
PG
400
130.85
3
Default
EAN
5415129046986

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with BN06-10
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Sendzimir galvanized (EN 10143) PG (pre-galvanized):

Products made of Sendzimir (pre-galvanized) or continuous hot-dip galvanized steel sheet and coils are mostly used wherever limited chemical contamination is likely, for example, in of ces, industrial buildings, covered parking lots, etc.
Characteristic of this steel type is that – prior to mechanical deformation – it is given a zinc coating by means of a continuous dipping process. This zinc coating is easily deformed. A cathodic action occurs on cut surfaces (up to 1.5mm) that protects against oxidation.
First, the steel is chemical cleaned and roughened in order to achieve a good bond. After the dipping process, the surplus zinc is blown off and one obtains an extra passivating coat (an ultra-thin protective coat) to prevent oxidation of the zinc coating (white rust). The coating thickness is usually expressed in g/m2. The most deployed type of Sendzimir steel is Z 275 = 275g/m2 (weighed on both sides), this corresponds to 18-20 µm (micron).
Sendzimir galvanized steel sourced from modern galvanizing lines has, in general, a uniform, shiny appearance. The previous, common fl owery surface is scarcely seen these days. This effect is obtained under the infl uence of lead but has no eff ect on the quality of the coating. The use of lead was banned due to the ever more stringent environmental standards.
14118
CTLI35-050-3DG
DG
50
13.08
3
EAN
5415129040144

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with BN06-10
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
14120
CTLI35-075-3DG
DG
75
21.49
3
EAN
5415129040168

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with BN06-10
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
14122
CTLI35-100-3DG
DG
100
29.9
3
EAN
5415129040182

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with BN06-10
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
14124
CTLI35-150-3DG
DG
150
46.73
3
EAN
5415129040205

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with BN06-10
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
14126
CTLI35-200-3DG
DG
200
63.55
3
EAN
5415129040229

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with BN06-10
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
14128
CTLI35-300-3DG
DG
300
97.2
3
EAN
5415129040243

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with BN06-10
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
14832
CTLI35-400-3DG
DG
400
130.85
3
EAN
5415129046993

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Load graph

Additional information

Product features
Connect with BN06-10
Coated finishing available on demand. RAL colour code to be confirmed on your order.
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm

Assembly

Load diagram