Trayco NV will be closed from 23/12/2024 until 3/01/2025. Click here for more info!

Cable ladder cable clamp

CL-CCI41

To be used with CLF160 / CLF200 / SP41

SKU Article code Finishing Dimension A Packaging
16482
CL-CCI41-12-DG
DG
8
10
Default
EAN
5415129063129

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Additional information

Product features
To be used with CLF160 / CLF200 / SP41
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
16483
CL-CCI41-16-DG
DG
12
10
Default
EAN
5415129063136

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Additional information

Product features
To be used with CLF160 / CLF200 / SP41
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
16484
CL-CCI41-20-DG
DG
16
10
Default
EAN
5415129063143

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Additional information

Product features
To be used with CLF160 / CLF200 / SP41
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
16485
CL-CCI41-24-DG
DG
20
10
Default
EAN
5415129063150

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Additional information

Product features
To be used with CLF160 / CLF200 / SP41
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
16486
CL-CCI41-28-DG
DG
24
10
Default
EAN
5415129063167

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Additional information

Product features
To be used with CLF160 / CLF200 / SP41
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
16487
CL-CCI41-32-DG
DG
28
10
Default
EAN
5415129063174

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Additional information

Product features
To be used with CLF160 / CLF200 / SP41
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
16488
CL-CCI41-36-DG
DG
32
10
Default
EAN
5415129063181

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Additional information

Product features
To be used with CLF160 / CLF200 / SP41
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
16489
CL-CCI41-40-DG
DG
36
10
Default
EAN
5415129063198

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Additional information

Product features
To be used with CLF160 / CLF200 / SP41
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
16490
CL-CCI41-44-DG
DG
40
10
Default
EAN
5415129063204

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Additional information

Product features
To be used with CLF160 / CLF200 / SP41
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
16491
CL-CCI41-48-DG
DG
44
10
Default
EAN
5415129063211

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Additional information

Product features
To be used with CLF160 / CLF200 / SP41
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
16492
CL-CCI41-52-DG
DG
48
10
Default
EAN
5415129063228

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Additional information

Product features
To be used with CLF160 / CLF200 / SP41
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
16493
CL-CCI41-56-DG
DG
52
10
Default
EAN
5415129063235

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Additional information

Product features
To be used with CLF160 / CLF200 / SP41
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
16494
CL-CCI41-60-DG
DG
56
10
Default
EAN
5415129063242

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Additional information

Product features
To be used with CLF160 / CLF200 / SP41
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
16495
CL-CCI41-64-DG
DG
60
10
Default
EAN
5415129063259

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Additional information

Product features
To be used with CLF160 / CLF200 / SP41
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm
16496
CL-CCI41-70-DG
DG
64
10
Default
EAN
5415129063266

Assembly

Workload

Norm
IEC61537
Safe workload
-
Max. torque
-

Additional information

Product features
To be used with CLF160 / CLF200 / SP41
Equipotential connection
IEC61537
EC declaration of conformity
We declare that our products are in conformity with:
- the rules of the essential requirements of the EC directive: 2014/35/EU (low voltage)
- the applicable national standards and technical specifications: CEI IEC 61537

Technical documentation is available at the manufacturer location.

(On condition that the products are used in the manner intended and/or in accordance with the current installation standards and/or with the recommendations of the manufacturer.)

Finishing

Hot-dip galvanized (EN ISO 1461) DG (dipped-galvanised):

Whenever cable support systems are exposed to the elements and/or caustic substances (such as petrochemical applications), they are given an additional treatment in the form of hot-dip galvanizing.
Hot-dip galvanizing is a materials science process designed to render the steel non-corroding. If this coating is breached, the zinc will act as a sacrifcial anode, so that the iron is protected by the zinc (aka cathodic protection). During galvanization, three alloys are formed: an iron-zinc alloy, a zinc-iron alloy and also a zinc alloy. The pre-treatment of the steel is crucially important in order to achieve a good bond.
The following process steps are involved: degreasing, rinsing, pickling, re-rinsing, fl uxing, drying and hot-dipping. The coating thickness depends on the steel composition, the material thickness and the time spent in the zinc bath. In the galvanizing standard NEN-EN-ISO 1461, the minimum coating thickness are prescribed (as shown in following overview), just as the zinc shrinkage per year which will depend on environmental factors (see table entitled `Corrosion classes’). In addition, the zinc coating forms an excellent substrate for other post-treatments, such as applying a powder coating and coats of paint (better known as the duplex system).
An added advantage of hot-dip galvanizing is that along the edges and pointy bits, where objects are usually extra susceptible to corrosion, the zinc coating is thicker because of the behaviour of the liquid.

Minimum thicknesses of the zinc coating according to ISO 1461
- Using the hot-dip method
Material thickness ≥ 6 mm = min. zinc coating thickness (average) 85µm
Material thickness ≥ 3 mm to < 6 mm = min. zinc coating thickness (average) 70µm
Material thickness ≥ 1,5 mm to < 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 1,5 mm = min. zinc coating thickness (average) 45µm
- Using the drum method
Material thickness ≥ 3 mm = min. zinc coating thickness (average) 55µm
Material thickness < 3 mm = min. zinc coating thickness (average) 45µm

Assembly